Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiol Mol Biol Rev ; 88(1): e0004223, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38099688

RESUMO

SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.


Assuntos
Cálcio , Organelas , Animais , Cálcio/análise , Organelas/química , Polifosfatos/análise , Bactérias , Biologia Molecular
2.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295429

RESUMO

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Ligação a Poli(A) , Doenças Neurodegenerativas/metabolismo , Condensados Biomoleculares
3.
Pathogens ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36986308

RESUMO

Trypanosoma brucei is the causative agent of African trypanosomiasis, a deadly disease that affects humans and cattle. There are very few drugs to treat it, and there is evidence of mounting resistance, raising the need for new drug development. Here, we report the presence of a phosphoinositide phospholipase C (TbPI-PLC-like), containing an X and a PDZ domain, that is similar to the previously characterized TbPI-PLC1. TbPI-PLC-like only possesses the X catalytic domain and does not have the EF-hand, Y, and C2 domains, having instead a PDZ domain. Recombinant TbPI-PLC-like does not hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) and does not modulate TbPI-PLC1 activity in vitro. TbPI-PLC-like shows a plasma membrane and intracellular localization in permeabilized cells and a surface localization in non-permeabilized cells. Surprisingly, knockdown of TbPI-PLC-like expression by RNAi significantly affected proliferation of both procyclic and bloodstream trypomastigotes. This is in contrast with the lack of effect of downregulation of expression of TbPI-PLC1.

5.
J Eukaryot Microbiol ; 69(6): e12948, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36258145
6.
Cell Calcium ; 107: 102654, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166935

RESUMO

The mitochondrial Ca2+ uptake, which is important to regulate bioenergetics, cell death and cytoplasmic Ca2+ signaling, is mediated via the calcium uniporter complex (MCUC). In animal cells the MCUC is regulated by the mitochondrial calcium uptake 1 and 2 dimer (MICU1/MICU2), which has been proposed to act as gatekeeper preventing mitochondrial Ca2+ overload at low cytosolic Ca2+ levels. In contrast to animal cells, knockout of either MICU1 or MICU2 in Trypanosoma cruzi, the etiologic agent of Chagas disease, did not allow Ca2+ uptake at low extramitochondrial Ca2+ concentrations ([Ca2+]ext) and it was though that in the absence of one MICU the other would replace its role. However, previous attempts to knockout both genes were unsuccessful. Here, we designed a strategy to generate TcMICU1/TcMICU2 double knockout cell lines using CRISPR/Cas9 genome editing. Ablation of both genes was confirmed by PCR and Southern blot analyses. The absence of both proteins did not allow Ca2+ uptake at low [Ca2+]ext, significantly decreased the mitochondrial Ca2+ uptake at different [Ca2+]ext, without dissipation of the mitochondrial membrane potential, and increased the [Ca2+]ext set point needed for Ca2+ uptake, as we have seen with TcMICU1-KO and TcMICU2-KO cells. Mg2+ was found to be a negative regulator of MCUC-mediated mitochondrial Ca2+ uptake at different [Ca2+]ext. Occlusion of the MCUC pore by Mg2+ could partially explain the lack of mitochondrial Ca2+ uptake at low [Ca2+]ext in TcMICU1/TcMICU2-KO cells. In addition, TcMICU1/TcMICU2-KO epimastigotes had a lower growth rate, while infective trypomastigotes have a reduced capacity to invade host cells and to replicate within them as amastigotes.


Assuntos
Trypanosoma cruzi , Animais , Trypanosoma cruzi/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Potencial da Membrana Mitocondrial , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
7.
ACS Infect Dis ; 8(5): 1062-1074, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35482332

RESUMO

Trypanosoma cruzi is a unicellular parasite that causes Chagas disease, which is endemic in the American continent but also worldwide, distributed by migratory movements. A striking feature of trypanosomatids is the polycistronic transcription associated with post-transcriptional mechanisms that regulate the levels of translatable mRNA. In this context, epigenetic regulatory mechanisms have been revealed to be of great importance, since they are the only ones that would control the access of RNA polymerases to chromatin. Bromodomains are epigenetic protein readers that recognize and specifically bind to acetylated lysine residues, mostly at histone proteins. There are seven coding sequences for BD-containing proteins in trypanosomatids, named TcBDF1 to TcBDF7, and a putative new protein containing a bromodomain was recently described. Using the Tet-regulated overexpression plasmid pTcINDEX-GW and CRISPR/Cas9 genome editing, we were able to demonstrate the essentiality of TcBDF2 in T. cruzi. This bromodomain is located in the nucleus, through a bipartite nuclear localization signal. TcBDF2 was shown to be important for host cell invasion, amastigote replication, and differentiation from amastigotes to trypomastigotes. Overexpression of TcBDF2 diminished epimastigote replication. Also, some processes involved in pathogenesis were altered in these parasites, such as infection of mammalian cells, replication of amastigotes, and the number of trypomastigotes released from host cells. In in vitro studies, TcBDF2 was also able to bind inhibitors showing a specificity profile different from that of the previously characterized TcBDF3. These results point to TcBDF2 as a druggable target against T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/parasitologia , Histonas/metabolismo , Mamíferos/metabolismo , Domínios Proteicos , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/genética
8.
J Eukaryot Microbiol ; 69(6): e12899, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35191563

RESUMO

Acidocalcisomes are electron-dense organelles rich in polyphosphate and inorganic and organic cations that are acidified by proton pumps, and possess several channels, pumps, and transporters. They are present in bacteria and eukaryotes and have been studied in greater detail in trypanosomatids. Biogenesis studies of trypanosomatid acidocalcisomes found that they share properties with lysosome-related organelles of animal cells. In addition to their described roles in autophagy, cation and phosphorus storage, osmoregulation, pH homeostasis, and pathogenesis, recent studies have defined the role of these organelles in phosphate utilization, calcium ion (Ca2+ ) signaling, and bioenergetics, and will be the main subject of this review.


Assuntos
Cálcio , Organelas , Animais , Eucariotos , Polifosfatos/análise , Fósforo
9.
Environ Microbiol ; 24(7): 3051-3062, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099107

RESUMO

Developing transfection protocols for marine protists is an emerging field that will allow the functional characterization of protist genes and their roles in organism responses to the environment. We developed a CRISPR/Cas9 editing protocol for Bodo saltans, a free-living kinetoplastid with tolerance to both marine and freshwater conditions and a close non-parasitic relative of trypanosomatids. Our results show that SaCas9/single-guide RNA (sgRNA) ribonucleoprotein (RNP) complex-mediated disruption of the paraflagellar rod 2 gene (BsPFR2) was achieved using electroporation-mediated transfection. The use of CRISPR/Cas9 genome editing can increase the efficiency of targeted homologous recombination when a repair DNA template is provided. Our sequence analysis suggests two mechanisms for repairing double-strand breaks in B. saltans are active; homologous-directed repair (HDR) utilizing an exogenous DNA template that carries an antibiotic resistance gene and likley non-homologous end joining (NHEJ). However, HDR was only achieved when a single (vs. multiple) SaCas9 RNP complex was provided. Furthermore, the biallelic knockout of BsPFR2 was detrimental for the cell, highlighting its essential role for cell survival because it facilitates the movement of food particles into the cytostome. Our Cas9/sgRNA RNP complex protocol provides a new tool for assessing gene functions in B. saltans and perhaps similar protists with polycistronic transcription.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Sobrevivência Celular , DNA , Recombinação Homóloga
10.
Antioxid Redox Signal ; 36(13-15): 969-983, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34218689

RESUMO

Significance: Millions of people are infected with trypanosomatids and new therapeutic approaches are needed. Trypanosomatids possess one mitochondrion per cell and its study has led to discoveries of general biological interest. These mitochondria, as in their animal counterparts, generate reactive oxygen species (ROS) and have evolved enzymatic and nonenzymatic defenses against them. Mitochondrial calcium ion (Ca2+) overload leads to generation of ROS and its study could lead to relevant information on the biology of trypanosomatids and to novel drug targets. Recent Advances: Mitochondrial Ca2+ is normally involved in maintaining the bioenergetics of trypanosomes, but when Ca2+ overload occurs, it is associated with cell death. Trypanosomes lack key players in the mechanism of cell death described in mammalian cells, although mitochondrial Ca2+ overload results in collapse of their membrane potential, production of ROS, and cytochrome c release. They are also very resistant to mitochondrial permeability transition, and cell death after mitochondrial Ca2+ overload depends on generation of ROS. Critical Issues: In this review, we consider the mechanisms of mitochondrial oxidant generation and removal and the involvement of Ca2+ in trypanosome cell death. Future Directions: More studies are required to determine the reactions involved in generation of ROS by the mitochondria of trypanosomatids, their enzymatic and nonenzymatic defenses against ROS, and the occurrence and composition of a mitochondrial permeability transition pore. Antioxid. Redox Signal. 36, 969-983.


Assuntos
Cálcio , Mitocôndrias , Animais , Cálcio/metabolismo , Citocromos c/metabolismo , Humanos , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Espécies Reativas de Oxigênio/metabolismo
11.
mBio ; 12(6): e0198121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724827

RESUMO

Trypanosoma cruzi, the agent of Chagas disease, accumulates polyphosphate (polyP) and Ca2+ inside acidocalcisomes. The alkalinization of this organelle stimulates polyP hydrolysis and Ca2+ release. Here, we report that histidine ammonia lyase (HAL), an enzyme that catalyzes histidine deamination with production of ammonia (NH3) and urocanate, is responsible for acidocalcisome alkalinization. Histidine addition to live parasites expressing HAL fused to the pH-sensitive emission biosensor green fluorescent protein (GFP) variant pHluorin induced alkalinization of acidocalcisomes. PolyP decreased HAL activity of epimastigote lysates or the recombinant protein but did not cause its polyphosphorylation, as determined by the lack of HAL electrophoretic shift on NuPAGE gels using both in vitro and in vivo conditions. We demonstrate that HAL binds strongly to polyP and localizes to the acidocalcisomes and cytosol of the parasite. Four lysine residues localized in the HAL C-terminal region are instrumental for its polyP binding, its inhibition by polyP, its function inside acidocalcisomes, and parasite survival under starvation conditions. Expression of HAL in yeast deficient in polyP degradation decreased cell fitness. This effect was enhanced by histidine and decreased when the lysine-rich C-terminal region was deleted. In conclusion, this study highlights a mechanism for stimulation of acidocalcisome alkalinization linked to amino acid metabolism. IMPORTANCE Trypanosoma cruzi is the etiologic agent of Chagas disease and is characterized by the presence of acidocalcisomes, organelles rich in phosphate and calcium. Release of these molecules, which are necessary for growth and cell signaling, is induced by alkalinization, but a physiological mechanism for acidocalcisome alkalinization was unknown. In this work, we demonstrate that a histidine ammonia lyase localizes to acidocalcisomes and is responsible for their alkalinization.


Assuntos
Histidina Amônia-Liase/metabolismo , Organelas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Álcalis/metabolismo , Motivos de Aminoácidos , Cálcio/metabolismo , Doença de Chagas/parasitologia , Histidina/metabolismo , Histidina Amônia-Liase/química , Histidina Amônia-Liase/genética , Humanos , Organelas/química , Polifosfatos/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
12.
Microbiol Spectr ; 9(2): e0073821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34585973

RESUMO

Protein phosphorylation is involved in several key biological roles in the complex life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease, and protein kinases are potential drug targets. Here, we report that the AGC essential kinase 1 (TcAEK1) exhibits a cytosolic localization and a higher level of expression in the replicative stages of the parasite. A CRISPR/Cas9 editing technique was used to generate ATP analog-sensitive TcAEK1 gatekeeper residue mutants that were selectively and acutely inhibited by bumped kinase inhibitors (BKIs). Analysis of a single allele deletion cell line (TcAEK1-SKO), and gatekeeper mutants upon treatment with inhibitor, showed that epimastigote forms exhibited a severe defect in cytokinesis. Moreover, we also demonstrated that TcAEK1 is essential for epimastigote proliferation, trypomastigote host cell invasion, and amastigote replication. We suggest that TcAEK1 is a pleiotropic player involved in cytokinesis regulation in T. cruzi and thus validate TcAEK1 as a drug target for further exploration. The gene editing strategy we applied to construct the ATP analog-sensitive enzyme could be appropriate for the study of other proteins of the T. cruzi kinome. IMPORTANCE Chagas disease affects 6 to 7 million people in the Americas, and its treatment has been limited to drugs with relatively high toxicity and low efficacy in the chronic phase of the infection. New validated targets are needed to combat this disease. In this work, we report the chemical and genetic validation of the protein kinase AEK1, which is essential for cytokinesis and infectivity, using a novel gene editing strategy.


Assuntos
Proliferação de Células , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Doença de Chagas/genética , Doença de Chagas/parasitologia , Citocinese , Citosol , Edição de Genes , Técnicas de Silenciamento de Genes , Humanos , Estágios do Ciclo de Vida
13.
Curr Opin Microbiol ; 64: 33-40, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571430

RESUMO

Calcium ion (Ca2+) signaling is one of the most frequently employed mechanisms of signal transduction by eukaryotic cells, and starts with either Ca2+ release from intracellular stores or Ca2+ entry through the plasma membrane. In intracellular protist parasites Ca2+ signaling initiates a sequence of events that may facilitate their invasion of host cells, respond to environmental changes within the host, or regulate the function of their intracellular organelles. In this review we examine recent findings in Ca2+ signaling in two groups of intracellular protist parasites that have been studied in more detail, the apicomplexan and the trypanosomatid parasites.


Assuntos
Sinalização do Cálcio , Parasitos , Animais , Membrana Celular/metabolismo
14.
Int Rev Cell Mol Biol ; 362: 261-289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34253297

RESUMO

Mitochondrial calcium ion (Ca2+) uptake is important for buffering cytosolic Ca2+ levels, for regulating cell bioenergetics, and for cell death and autophagy. Ca2+ uptake is mediated by a mitochondrial Ca2+ uniporter (MCU) and the discovery of this channel in trypanosomes has been critical for the identification of the molecular nature of the channel in all eukaryotes. However, the trypanosome uniporter, which has been studied in detail in Trypanosoma cruzi, the agent of Chagas disease, and T. brucei, the agent of human and animal African trypanosomiasis, has lineage-specific adaptations which include the lack of some homologues to mammalian subunits, and the presence of unique subunits. Here, we review newly emerging insights into the role of mitochondrial Ca2+ homeostasis in trypanosomes, the composition of the uniporter, its functional characterization, and its role in general physiology.


Assuntos
Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo , Trypanosoma/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Humanos
15.
FASEB J ; 35(7): e21685, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085343

RESUMO

Leucine zipper-EF-hand containing transmembrane protein 1 (Letm1) is a mitochondrial inner membrane protein involved in Ca2+ and K+ homeostasis in mammalian cells. Here, we demonstrate that the Letm1 orthologue of Trypanosoma cruzi, the etiologic agent of Chagas disease, is important for mitochondrial Ca2+ uptake and release. The results show that both mitochondrial Ca2+ influx and efflux are reduced in TcLetm1 knockdown (TcLetm1-KD) cells and increased in TcLetm1 overexpressing cells, without alterations in the mitochondrial membrane potential. Remarkably, TcLetm1 knockdown or overexpression increases or does not affect mitochondrial Ca2+ levels in epimastigotes, respectively. TcLetm1-KD epimastigotes have reduced growth, and both overexpression and knockdown of TcLetm1 cause a defect in metacyclogenesis. TcLetm1-KD also affected mitochondrial bioenergetics. Invasion of host cells by TcLetm1-KD trypomastigotes and their intracellular replication is greatly impaired. Taken together, our findings indicate that TcLetm1 is important for Ca2+ homeostasis and cell viability in T cruzi.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Doença de Chagas/parasitologia , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Transporte Biológico , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Chlorocebus aethiops , Metabolismo Energético , Potencial da Membrana Mitocondrial , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Trypanosoma cruzi/metabolismo , Células Vero
16.
FASEB J ; 35(6): e21641, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34041791

RESUMO

The bloodstream stage of Trypanosoma brucei, the causative agent of African trypanosomiasis, is characterized by its high rate of endocytosis, which is involved in remodeling of its surface coat. Here we present evidence that RNAi-mediated expression down-regulation of vacuolar protein sorting 41 (Vps41), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, leads to a strong inhibition of endocytosis, vesicle accumulation, enlargement of the flagellar pocket ("big eye" phenotype), and dramatic effect on cell growth. Unexpectedly, other functions described for Vps41 in mammalian cells and yeasts, such as delivery of proteins to lysosomes, and lysosome-related organelles (acidocalcisomes) were unaffected, indicating that in trypanosomes post-Golgi trafficking is distinct from that of mammalian cells and yeasts. The essentiality of TbVps41 suggests that it is a potential drug target.


Assuntos
Endocitose , Lisossomos/metabolismo , Organelas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/fisiologia , Tripanossomíase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Proteico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Interferência de RNA , Tripanossomíase/parasitologia , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
17.
Mol Microbiol ; 115(5): 1054-1068, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33793004

RESUMO

Ca2+ is a universal intracellular signal that regulates many cellular functions. In Toxoplasma gondii, the controlled influx of extracellular and intracellular Ca2+ into the cytosol initiates a signaling cascade that promotes pathogenic processes like tissue destruction and dissemination. In this work, we studied the role of proton transport in cytosolic Ca2+ homeostasis and the initiation of Ca2+ signaling. We used a T. gondii mutant of the V-H+ -ATPase, a pump previously shown to transport protons to the extracellular medium, and to control intracellular pH and membrane potential and we show that proton gradients are important for maintaining resting cytosolic Ca2+ at physiological levels and for Ca2+ influx. Proton transport was also important for Ca2+ storage by acidic stores and, unexpectedly, the endoplasmic reticulum. Proton transport impacted the amount of polyphosphate (polyP), a phosphate polymer that binds Ca2+ and concentrates in acidocalcisomes. This was supported by the co-localization of the vacuolar transporter chaperone 4 (VTC4), the catalytic subunit of the VTC complex that synthesizes polyP, with the V-ATPase in acidocalcisomes. Our work shows that proton transport regulates plasma membrane Ca2+ transport and control acidocalcisome polyP and Ca2+ content, impacting Ca2+ signaling and downstream stimulation of motility and egress in T. gondii.


Assuntos
Ácidos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Transporte Biológico , Membrana Celular/genética , Citosol/metabolismo , Polifosfatos/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
19.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824204

RESUMO

Pyruvate is the final metabolite of glycolysis and can be converted into acetyl coenzyme A (acetyl-CoA) in mitochondria, where it is used as the substrate for the tricarboxylic acid cycle. Pyruvate availability in mitochondria depends on its active transport through the heterocomplex formed by the mitochondrial pyruvate carriers 1 and 2 (MPC1/MPC2). We report here studies on MPC1/MPC2 of Trypanosoma cruzi, the etiologic agent of Chagas disease. Endogenous tagging of T. cruziMPC1 (TcMPC1) and TcMPC2 with 3×c-Myc showed that both encoded proteins colocalize with MitoTracker to the mitochondria of epimastigotes. Individual knockout (KO) of TcMPC1 and TcMPC2 genes using CRISPR/Cas9 was confirmed by PCR and Southern blot analyses. Digitonin-permeabilized TcMPC1-KO and TcMPC2-KO epimastigotes showed reduced O2 consumption rates when pyruvate, but not succinate, was used as the mitochondrial substrate, while α-ketoglutarate increased their O2 consumption rates due to an increase in α-ketoglutarate dehydrogenase activity. Defective mitochondrial pyruvate import resulted in decreased Ca2+ uptake. The inhibitors UK5099 and malonate impaired pyruvate-driven oxygen consumption in permeabilized control cells. Inhibition of succinate dehydrogenase by malonate indicated that pyruvate needs to be converted into succinate to increase respiration. TcMPC1-KO and TcMPC2-KO epimastigotes showed little growth differences in standard or low-glucose culture medium. However, the ability of trypomastigotes to infect tissue culture cells and replicate as intracellular amastigotes was decreased in TcMPC-KOs. Overall, T. cruzi MPC1 and MPC2 are essential for cellular respiration in the presence of pyruvate, invasion of host cells, and replication of amastigotes.IMPORTANCETrypanosoma cruzi is the causative agent of Chagas disease. Pyruvate is the end product of glycolysis, and its transport into the mitochondrion is mediated by the mitochondrial pyruvate carrier (MPC) subunits. Using the CRISPR/Cas9 technique, we generated individual T. cruziMPC1 (TcMPC1) and TcMPC2 knockouts and demonstrated that they are essential for pyruvate-driven respiration. Interestingly, although glycolysis was reported as not an important source of energy for the infective stages, MPC was essential for normal host cell invasion and intracellular replication.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Protozoários/genética , Ácido Pirúvico/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Sistemas CRISPR-Cas , Replicação do DNA , Técnicas de Inativação de Genes , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/patogenicidade
20.
PLoS Pathog ; 17(3): e1009399, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720977

RESUMO

Trypanosoma cruzi is a protist parasite and the causative agent of American trypanosomiasis or Chagas disease. The parasite life cycle in its mammalian host includes an intracellular stage, and glycosylated proteins play a key role in host-parasite interaction facilitating adhesion, invasion and immune evasion. Here, we report that a Golgi-localized Mn2+-Ca2+/H+ exchanger of T. cruzi (TcGDT1) is required for efficient protein glycosylation, host cell invasion, and intracellular replication. The Golgi localization was determined by immunofluorescence and electron microscopy assays. TcGDT1 was able to complement the growth defect of Saccharomyces cerevisiae null mutants of its ortholog ScGDT1 but ablation of TcGDT1 by CRISPR/Cas9 did not affect the growth of the insect stage of the parasite. The defect in protein glycosylation was rescued by Mn2+ supplementation to the growth medium, underscoring the importance of this transition metal for Golgi glycosylation of proteins.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Doença de Chagas/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Manganês/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/fisiologia , Animais , Chlorocebus aethiops , Glicosilação , Complexo de Golgi/metabolismo , Células Vero , Internalização do Vírus , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...